Markscheme

November 2017

Physics

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

(Questi	ion	Answers	Notes	Total
1.	а		single smooth curve passing through all data points ✓	Do not accept straight lines joining the dots Curve must touch some part of every x	1
1.	b	i	tangent drawn at 80 °C ✓ gradient values separated by minimum of 20 °C ✓	Do not accept tangent unless "ruler" straight. Tangent line must be touching the curve drawn for MP1 to be awarded.	3
			$9.0 \times 10^{-4} \text{ «kJ kg}^{-1} \text{K}^{-2} \text{»} \checkmark$	Accept values between 7.0×10^{-4} and 10×10^{-4} . Accept working in J, giving 0.7 to 1.0	
1.	b	ii	kJ kg ⁻¹ K ⁻² ✓		1
1.	С	i	«0.1×4.198×10 =» 4.198 «kJ» <i>or</i> 4198 «J» ✓	Accept values between 4.19 and 4.21	1
1.	С	ii	percentage uncertainty in $\Delta T = 10\%$ \checkmark $(2\% + 5\% + 10\% =) 17\%$ \checkmark	Allow fractional uncertainties in MP1 and MP2 Watch for ECF from (c)(i) Watch for ECF from MP1	
			absolute uncertainty = «0.17 × 4.198 =» 0.7 «kJ» therefore 2 sig figs OR absolute uncertainty to more than 1 sig fig and consistent final answer ✓	Watch for ECF from MP2 Do not accept an answer without justification	3

C	Question		Answers	Notes	Total
2.	а		$\ll \varepsilon = IR + Ir $ »	No mark for stating data booklet equation	
			$\frac{1}{I} = \frac{R}{\varepsilon} + \frac{r}{\varepsilon} \checkmark$ identifies equation with $y = mx + c \checkmark$	Do not accept working where r is ignored or $\varepsilon = IR$ is used $OWTTE$	2
			whence $m = \frac{1}{\varepsilon}$ »		
2.	b		«-» r ✓	Allow answer in words	1

3.	а	«to reduce» random errors ✓	OWTTE		
		to reduce absolute uncertainty ✓	Do not accept just "to find an average" or just "reduce error"	1 max	
		to improve precision ✓	Ignore any mention to accuracy		
3.	b	as the literature value is within the range «9.7 –11.1» ✓	OWTTE		
		hence it is accurate ✓	MP2 must be correctly justified	2	

Section B

Option A — Relativity

	Question		Answers	Notes	Total
4.			light is an EM wave ✓		•
			speed of light is independent of the source/observer ✓		2

5.	а		a co-ordinate system in which measurements «of distance and time» can be made ✓	Ignore any mention to inertial reference frame.	1
5.	b		closing speed = c ✓		2
			2 «s» ✓		2
5.	С		u and v are velocities with respect to the same frame of reference/Earth AND u' the relative velocity \checkmark	Accept 0.4c and 0.6c for u and v	1
5.	d		$\frac{-0.4 - 0.6}{1 + 0.24} \checkmark$		2
			«-»0.81 <i>c</i> ✓		
5.	е	i	γ = 1.25 ✓		
			so the time is $t = 1.6 \text{ «s} \text{»} \checkmark$		2
5.	е	ii	gamma is smaller for B ✓		2
			so time is greater than for A ✓		2

(Question	Answers	Notes	Total
6.	а	the length of an object in its rest frame OR the length of an object measured when at rest relative to the observer ✓		1
6.	b	world lines for front and back of tunnel parallel to <i>ct</i> axis ✓ world lines for front and back of train ✓ which are parallel to <i>ct'</i> axis ✓	ct ct'	3
6.	С	realizes that gamma = 1.25 ✓ 0.6c ✓		2

(Question 6 continued)

(Question	Answers	Notes	Total
6.	d	indicates the two simultaneous events for t frame \checkmark marks on the diagram the different times «for both spacetime points» on the ct' axis «shown as $\Delta t'$ on each diagram» \checkmark	ct Ct' x'	2
		ALTERNATIVE 2: (no diagram reference)		
		the two events occur at different points in space ✓		
		statement that the two events are not simultaneous in the t' frame \checkmark		

C	Question		Answers	Notes	Total
7.	а		Λ momentum = 900 ✓		
			$E_{\text{proton}} = \sqrt{pc^2 + (mc^2)^2} = \sqrt{630^2 + 938^2} = \text{``130 "MeV"}$		
			$E_{\text{pion}} = \sqrt{270^2 + 140^2} = 304 \text{ "MeV} $		4
			so rest mass of $\Lambda = \sqrt{(1130 + 304)^2 - 900^2} = *1116 \text{ "MeV c}^{-2} "$		
7.	q		$ext{W} = \gamma mc^2 \text{so} \approx \gamma = ext{V} = \frac{1434}{1116} = 1.28 \checkmark$		2
			to give 0.64c ✓		

Qu	uestion	Answers	Notes	Total
8.	a	this is gravitational time dilation OR black hole gives rise to a «strong» gravitational field ✓		
		clocks in stronger field run more slowly OR the clock «signal» is subject to gravitational red-shift ✓		2 max
		the clock is subject to gravitational red shift OR the clock has lost gravitational potential energy in moving close to the black hole ✓		
8.	b	ALTERNATIVE 1 (10 ks is in observer frame):		
		$\Delta t' = 10000 \sqrt{1 - \frac{6.0 \times 10^5}{7.0 \times 10^8}} $	Allow 9996 Allow ECF if 10 is used instead of 10000	
		9995.7 so 9995 «ticks» ✓ ALTERNATIVE 2 (10 ks is in rocket frame):		2
		$\Delta t = \frac{10000}{\sqrt{1 - \frac{6.0 \times 10^5}{7.0 \times 10^8}}} \checkmark$	Allow ECF if 10 is used instead of 10000	
		10004 «ticks» ✓		

Option B — Engineering physics

Question		on	Answers	Notes	Total
9.	а		weight, normal reaction and friction in correct direction ✓ correct points of application for at least two correct forces ✓	Labelled on diagram. Note: The proof of the	2
				F _t θ	

(Question 9 continued)

Question	Answers	Notes	Total
9. b	ALTERNATIVE 1 $ma = mg \sin \theta - F_{f} \checkmark$ $I\alpha = F_{f} \times r$ OR $mr\alpha = F_{f} \checkmark$ $\alpha = \frac{a}{r} \checkmark$	Can be in any order $ Accept \ answers \ using \ the \ parallel \ axis \ theorem \\ (with \ I=2mr^2) \ only \ if \ clear \ and \ explicit \ mention \\ that \ the \ only \ torque \ is \ from \ the \ weight $	
	$ma = mg \sin \theta - mr \frac{a}{r} \rightarrow 2a = g \sin \theta \checkmark$ ALTERNATIVE 2 $mgh = \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 \checkmark$ substituting $\omega = \frac{v}{r}$ «giving $v = \sqrt{gh}$ » \checkmark correct use of a kinematic equation \checkmark use of trigonometry to relate displacement and height « $s = h \sin \theta$ » \checkmark	For alternative 2, MP3 and MP4 can only be awarded if the previous marking points are present	4

(Question 9 continued)

Q	uestion	Answers	Notes	Total
9.	С	1.68 «ms ⁻² » ✓		1
9.	d	ALTERNATIVE 1		
		$N = mg\cos\theta \checkmark$		
		$F_{\rm f} \leq \mu mg \cos \theta \checkmark$		
		ALTERNATIVE 2		2
		F _f = ma «from 9(b)» ✓		
		so $F_{\rm f} = \frac{mg\sin\theta}{2}$		
9.	е	$F_{\rm f} = \mu mg \cos \theta \checkmark$		
		$\frac{mg\sin\theta}{2} = mg\sin\theta - \mu mg\cos\theta$ OR $mg\frac{\sin\theta}{2} = \mu mg\cos\theta \checkmark$ algebraic manipulation to reach $\tan\theta = 2\mu \checkmark$		3
		algebraic manipulation to reach $\tan \theta = 2\mu$		

G	uestion	Answers	Notes	Total
10.	а	$500000 \times (2 \times 10^{-3})^{\frac{5}{3}} = 100000 \times V^{\frac{5}{3}} \checkmark$ $V = 5.25 \times 10^{-3} \text{ «m}^3 \text{ »} \checkmark$	Look carefully for correct use of pV^{γ} = constant	2
10.	b	correct vertical and horizontal lines ✓ curve between B and C ✓	Allow tolerance ±1 square for A, B and C Allow ECF for MP2 Points do not need to be labelled for marking points to be awarded 700 600 500 400 p / kpa 300 200 100 A C V / 10-3 m³	2
10.	С	use of $PV = nRT$ OR use of $\frac{P}{T} = \text{constant}$ \checkmark $T = \text{$<$}5 \times 290 = \text{$>$} 1450 \text{ $<$}K \text{$>$} \checkmark$		2

(Question 10 continued)

Q	uestion	Answers	Notes	Total
10.	d	area enclosed ✓		
		work is done by the gas during expansion		
		OR		2 max
		work is done on the gas during compression ✓		
		the area under the expansion is greater than the area under the compression \checkmark		

Q	uesti	ion	Answers	Notes	Total
11.	а	i	density = 785 «kgm ⁻³ » \checkmark « $\frac{4}{3}\pi(0.03)^3 \times 785 \times 9.8 = $ » 0.87 «N» \checkmark	Accept answer in the range 784 to 786	2
11.	а	ii	$ \frac{0.87}{\frac{4}{3}\pi(0.03)^3 \times 1080 \times 9.8} $ OR $ \frac{0.87}{1080 \times 1.13 \times 10^{-4}} $ OR $ \frac{785}{1080} \checkmark $ 0.727 or 73 % \checkmark	Allow ECF from (a)(i)	2
11.	b		use of drag force to obtain $\frac{4}{3}\pi r^3 \times 0.04 \times g = 6 \times \pi \times 0.0011 \times r \times v$ \checkmark $v = 0.071 \text{cms}^{-1} \text{ w}$		2

Q	uestio	Answers	Notes	Total
12.	а	the time between undulations is $\frac{3}{5.6} = 0.536 \text{s.s.} \checkmark$ $f = \frac{1}{0.536} = 1.87 \text{s.f.} \checkmark$ $\text{"frequencies match" resonance occurs so amplitude of vibration becomes greater } \checkmark$ $ALTERNATIVE 2$ $f = \frac{v}{\lambda} = \frac{5.6}{3} \checkmark$ $f = 1.87 \text{s.f.} \times \text{Hz.s.} \checkmark$	Must see mention of "resonance" for MP3	3
		«frequencies match» resonance occurs so amplitude of vibration becomes greater ✓	Must see mention of "resonance" for MP3	
12.	b	«to increase damping» reduce Q ✓		1

Option C — Imaging

Q	uesti	on	Answers	Notes	Total
13.	а	i	with object placed between lens and focus ✓ two rays correctly drawn ✓ f thin converging lens	Backwards extrapolation of refracted rays can be dashes or solid lines Do not penalize extrapolated rays which would meet beyond the edge of page Image need not be shown	2
13.	а	ii	«just less than» the focal length or f ✓		1
13.	b	i	$\frac{1}{10} + \frac{1}{v} = \frac{1}{2} \checkmark$ $v = 2.5 \text{ m} \checkmark$		2
13.	b	ii	real, smaller, inverted ✓	All three required — OWTTE	1

(Question 13 continued)

Q	Question		Answers	Notes	
13.	С	i	two correct rays coming from Q ✓	Allow any two of the three conventional rays.	
			locating Q' below the main axis $\textbf{\textit{AND}}$ beyond f to the right of lens $\textbf{\textit{AND}}$ at intercept of rays \checkmark	$ \begin{array}{c c} R \\ P Q \\ \hline 0.30 \text{ m} \end{array} $ $ \begin{array}{c} f \\ \hline 10.0 \text{ m} \end{array} $	2
13.	С	ii	$\frac{h}{h'} = \frac{-x}{x'}$ OR 2.5 or $10 \times 0.3 \text{ m} \text{ m} \checkmark$ «-» $0.075 \text{ m} \checkmark$		2
13.	С	iii	towards Q ✓	Accept move to the left	1
13.	С	iv	spherical aberration ✓	, isospi more to the lot	•
			top of the shape «R» is far from axis so no paraxial rays ✓	For MP2 accept rays far from the centre converge at different points	2

G	uestio	n	Answers	Notes	Total
14.	а		plane mirror to the left of principal focus tilted anti-clockwise ✓	eg:	
			two rays which would go through the principal focus ✓	parabolic reflector	
			two rays cross between mirror and eyepiece AND passing through the eyepiece ✓	principal focus eyepiece	3
14.	b		$\frac{2 \times 1737}{363300} = \frac{0.0120}{f} \checkmark$ $f = 1.25 \text{ m} \checkmark$	Allow ECF if factor of 2 omitted answer is 2.5 m	2
14.	С		$M = \frac{1.25}{0.05} = 25 $		1
14.	d		parabolic/convex mirror instead of flat mirror ✓		1 may
			eyepiece/image axis same as mirror ✓		1 max

Question		Answers	Notes	Total
15.	а	realization that θ min is the critical angle \checkmark		
		$\theta = \text{«} \sin^{-1} \frac{1.48}{1.5} = \text{»} 80.6 \text{ «}^{\circ} \text{»} \checkmark$	Accept 1.4 rad	
		1.5	Accept 0.16 rad	3
		$\beta = \text{``}90 - 80.6 = \text{``}9.4 \text{``} \text{``}$		
15.	b	because the critical angle is nearly 90° ✓		
		then only rays that are «almost» parallel to the fibre pass down it ✓		3
		so pulse broadening is reduced ✓	OWTTE	

16.	а	evidence of finding the gradient ✓	
		μ = « – gradient =» 59.9 « cm ⁻¹ » \checkmark	2
16.	b	$I = \frac{I_0}{25000} \checkmark$	2

${\bf Option}\; {\bf D} - {\bf Astrophysics}$

Q	uesti	on	Answers	Notes	Total
17.	а	i	«nuclear» fusion ✓	Do not accept "burning"	1
17.	а	ii	brightness depends on luminosity and distance/ $b = \frac{L}{4\pi d^2}$ Vega is much further away but has a larger luminosity \checkmark	Accept answer in terms of Jupiter for MP2	2
			vega is much further away but has a larger luminosity •		
17.	b	i	a group of stars forming a pattern on the sky AND not necessarily close in distance to each other ✓	OWTTE	1
17.	b	ii	the star's position is observed at two times, six months apart, relative to distant stars parallax angle is half the angle of shift * * * * * Vega P 2 postions of Earth 6 months apart	Answers may be given in diagram form, so allow the marking points if clearly drawn	2

(Question 17 continued)

Q	Question		Answers	Notes	Total
17.	b	iii	$\frac{1}{0.13} = 7.7 \text{ "pc" } \checkmark$ so $d = 7.7 \times 3.26 = 25.1 \text{ "ly" } \checkmark$		2

18.	а	two stars orbiting a common centre «of mass» ✓	Do not accept "stars which orbit each other"	1
18.	b	$\ll \lambda \times T = 2.9 \times 10^{-3} \text{ w}$		
		$T = \frac{2.9 \times 10^{-3}}{115 \times 10^{-9}} = 25217 \text{ «K » } \checkmark$		1
18.	С	use of the mass-luminosity relationship $or \left(\frac{M_{\text{Sirius}}}{M_{\text{Sun}}}\right)^{3.5} = 1$	Conclusion is given, justification must be stated	•
		if Sirius B is on the main sequence then $\left(\frac{L_{\text{SiriusB}}}{L_{\text{Sun}}}\right) = 1$ «which it is not» \checkmark	Allow reverse argument beginning with luminosity	2

(Question 18 continued)

Question		on	Answers	Notes	Total
18.	d	i	$\left(\frac{L_{\text{SiriusB}}}{L_{\text{Sun}}}\right) = 0.025 \checkmark$ $r_{\text{Sirius}} = \sqrt{0.025 \times \left(\frac{5800}{25000}\right)^4} = 0.0085 r_{\text{Sun}} \checkmark$		2
18.	d	ii	white dwarf ✓		1
18.	е	i	Sirius A on the main sequence above and to the left of the Sun <i>AND</i> Sirius B on white dwarf area as shown ✓	Both positions must be labelled Allow the position anywhere within the limits shown. $ \frac{1000000L_{\odot}}{10000L_{\odot}} \frac{1}{1000} \frac{L_{\odot}}{L_{\odot}} \frac{1}{10000L_{\odot}} \frac{1}{250001000060003000} \frac{1}{1000001000001000001000001000001000000$	1

(Question 18 continued)

Question		on	Answers	Notes	Total
18.	е	ii	arrow goes up and right and then loops to white dwarf area ✓	$\begin{array}{c} 1000000L_\odot\\ \\ 10000L_\odot\\ \\ \\ L_\odot\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1

19.	а	galaxies are moving away OR space «between galaxies» is expanding ✓	Do not accept just red-shift	1
19.	b	$ \frac{\Delta\lambda}{\lambda} = \frac{1.04}{115} = \frac{v}{c} \checkmark $ $0.009c \checkmark $	Accept 2.7×10^6 «m s ⁻¹ » Award [0] if 116 is used for λ	2

Question		n	Answers	Notes	Total	
20.	а		interstellar gas/dust «from earlier supernova» ✓			
			gravitational attraction between particles ✓			
			if the mass is greater than the Jean's mass/ $M_{\rm j}$ the interstellar gas coalesces \checkmark	MP3 can be expressed in terms of potential and kinetic energy	4	
			as gas collapses temperature increases leading to nuclear fusion ✓			
20.	b		fluctuations in CMB due to differences in temperature/mass/density ✓			
			during the inflationary period/epoch/early universe ✓		2 may	
			leading to the formation of galaxies/stars/structures ✓		3 max	
			gravitational interaction between galaxies can lead to collision ✓			

(Question 20 continued)

Question		n Answers	Notes	Total
20.	С	ALTERNATIVE 1		
		kinetic energy of galaxy $\frac{1}{2}mv^2 = \frac{1}{2}mH^2r^2$ «uses Hubble's law» \checkmark		
		potential energy = $\frac{GMm}{r} = G\frac{4}{3}\pi r^3 \rho \frac{m}{r}$ «introduces density» \checkmark		
		KE=PE to get expression for critical ρ \checkmark		
		ALTERNATIVE 2		3
		escape velocity of distant galaxy $v = \sqrt{\frac{2GM}{r}} \checkmark$		
		where $H_0 r = \sqrt{\frac{2GM}{r}}$		
		substitutes $M = \frac{4}{3}\pi r^3 \rho$ to get result \checkmark		