Markscheme

November 2017

Physics

Higher level

Paper 3

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question			Answers	Notes	Total
1.	a		single smooth curve passing through all data points \checkmark	Do not accept straight lines joining the dots Curve must touch some part of every x	1
1.	b	i	tangent drawn at $80^{\circ} \mathrm{C} \checkmark$ gradient values separated by minimum of $20^{\circ} \mathrm{C} \checkmark$ $9.0 \times 10^{-4}<\mathrm{kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-2} » \checkmark$	Do not accept tangent unless "ruler" straight. Tangent line must be touching the curve drawn for MP1 to be awarded. Accept values between 7.0×10^{-4} and 10×10^{-4}. Accept working in J, giving 0.7 to 1.0	3
1.	b	ii	$\mathrm{kJkg}^{-1} \mathrm{~K}^{-2} \checkmark$		1
1.	c	i	«0.1×4.198×10=» 4.198 «kJ» or 4198 «J» \checkmark	Accept values between 4.19 and 4.21	1
1.	c	ii	percentage uncertainty in $\Delta T=10 \%$ «2\% + 5\% + 10\% =» 17\% absolute uncertainty $=$ « $0.17 \times 4.198=$ » 0.7 «kJ» therefore 2 sig figs OR absolute uncertainty to more than 1 sig fig and consistent final answer \checkmark	Allow fractional uncertainties in MP1 and MP2 Watch for ECF from (c)(i) Watch for ECF from MP1 Watch for ECF from MP2 Do not accept an answer without justification	3

Question		Answers	Notes	Total
2.	a	$\begin{aligned} & « \varepsilon=I R+I r » \\ & \frac{1}{I}=\frac{R}{\varepsilon}+\frac{r}{\varepsilon} \checkmark \end{aligned}$ identifies equation with $y=m x+c \checkmark$ «hence $m=\frac{1}{\varepsilon}$ "	No mark for stating data booklet equation Do not accept working where r is ignored or $\varepsilon=I R$ is used OWTTE	2
2.	b	«-» r d	Allow answer in words	1

| 3. | \mathbf{a} | «to reduce» random errors \checkmark
 to reduce absolute uncertainty \checkmark
 to improve precision \checkmark | OWTTE
 Do not accept just "to find an average" or just "reduce error"
 Ignore any mention to accuracy |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3 .}$ | \mathbf{b} | as the literature value is within the range «9.7-11.1»
 hence it is accurate \checkmark | OWTTE
 1 max |

Section B

Option A - Relativity

| Question | | Answers | Total | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4. | | | light is an EM wave \checkmark
 speed of light is independent of the source/observer \checkmark | Notes |

5.	a		a co-ordinate system in which measurements «of distance and time» can be made	Ignore any mention to inertial reference frame.	1
5.	b		closing speed $=c \checkmark$		2
			2 «s» \downarrow		
5.	c		u and v are velocities with respect to the same frame of reference/Earth $\boldsymbol{A N D} u^{\prime}$ the relative velocity	Accept 0.4c and 0.6c for u and v	1
5.	d		$\frac{-0.4-0.6}{1+0.24}$		2
			«-»0.81c \downarrow		
5.	e	i	$\gamma=1.25 \checkmark$		2
			so the time is $t=1.6$ «s» \checkmark		
5.	e	ii	gamma is smaller for $B \checkmark$		2
			so time is greater than for $\mathrm{A} \checkmark$		

Question		Answers	Notes	Total
6.	a	the length of an object in its rest frame OR the length of an object measured when at rest relative to the observer \checkmark		1
6.	b	world lines for front and back of tunnel parallel to ct axis \checkmark world lines for front and back of train \checkmark which are parallel to $c t^{\prime}$ axis \checkmark		3
6.	c	$\begin{aligned} & \text { realizes that gamma }=1.25 \checkmark \\ & 0.6 c \checkmark \end{aligned}$		2

(continued...)
(Question 6 continued)

| Question | | Answers | ALTERNATIVE 1
 indicates the two simultaneous events for t frame \checkmark
 marks on the diagram the different times «for both spacetime points» on
 the $c t^{\prime}$ axis «shown as Δt^{\prime} on each diagram» \checkmark |
| :--- | :--- | :--- | :--- | :--- |
| ALTERNATIVE 2: (no diagram reference) | | | |
| the two events occur at different points in space \checkmark | | | |
| statement that the two events are not simultaneous in the t^{\prime} frame \checkmark | | | |

Question		Answers	Notes	Total
7.	a	Λ momentum $=900 \checkmark$		
		$\begin{aligned} & E_{\text {proton }}=« \sqrt{p c^{2}+\left(m c^{2}\right)^{2}}=\sqrt{630^{2}+938^{2}}=» 1130 « \mathrm{MeV} » \checkmark \\ & E_{\text {pion }}=« \sqrt{270^{2}+140^{2}}=» 304 « \mathrm{MeV} » \checkmark \\ & \text { so rest mass of } \Lambda=« \sqrt{(1130+304)^{2}-900^{2}}=» 1116 « \mathrm{MeV} \mathrm{c}^{-2} » \checkmark \end{aligned}$		4
7.	b	$« E=\gamma m c^{2} \text { so» } \gamma=« \frac{1434}{1116}=» 1.28$		2
		to give $0.64{ }^{\text {c }} \checkmark$		

Option B — Engineering physics

| Question | | Answers | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 9. | a | | weight, normal reaction and friction in correct direction \checkmark |
| correct points of application for at least two correct forces \checkmark | Labelled on diagram. | | |

(continued...)
(Question 9 continued)

Question		Answers	Notes	Total
9.	b	ALTERNATIVE 1 $\begin{aligned} & m a=m g \sin \theta-F_{\mathrm{f}} \\ & I \alpha=F_{\mathrm{f}} \times r \end{aligned}$ OR $m r \alpha=F_{f} \checkmark$ $\alpha=\frac{a}{r} \checkmark$ $m a=m g \sin \theta-m r \frac{a}{r} \rightarrow 2 a=g \sin \theta$ ALTERNATIVE 2 $m g h=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}$ substituting $\omega=\frac{v}{r}$ «giving $v=\sqrt{g h}$ " correct use of a kinematic equation \checkmark use of trigonometry to relate displacement and height «s=hsin θ » \checkmark	Can be in any order Accept answers using the parallel axis theorem (with $I=2 m r^{2}$) only if clear and explicit mention that the only torque is from the weight For alternative 2, MP3 and MP4 can only be awarded if the previous marking points are present	4

(Question 9 continued)

Question		Answers	Notes	Total
9.	c	1.68 « ms^{-2} 》 \checkmark		1
9.	d	ALTERNATIVE 1 $\begin{aligned} & N=m g \cos \theta \checkmark \\ & F_{\mathrm{f}} \leq \mu m g \cos \theta \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & F_{\mathrm{f}}=m a « \text { «rom } 9(\mathrm{~b}) » \checkmark \\ & \text { so } F_{\mathrm{f}}=\frac{m g \sin \theta}{2} \checkmark \end{aligned}$		2
9.	e	$\begin{aligned} & F_{\mathrm{f}}=\mu m g \cos \theta \\ & \frac{m g \sin \theta}{2}=m g \sin \theta-\mu m g \cos \theta \end{aligned}$ OR $m g \frac{\sin \theta}{2}=\mu m g \cos \theta$ algebraic manipulation to reach $\tan \theta=2 \mu \checkmark$		3

Question		Answers	Notes	Total
10.	a	$\begin{aligned} & 500000 \times\left(2 \times 10^{-3}\right)^{\frac{5}{3}}=100000 \times V^{\frac{5}{3}} \\ & V=5.25 \times 10^{-3} « \mathrm{~m}^{3} » \end{aligned}$	Look carefully for correct use of $\mathrm{p}^{\gamma}=$ constant	2
10.	b	correct vertical and horizontal lines \checkmark curve between B and $C \checkmark$	Allow tolerance ± 1 square for A, B and C Allow ECF for MP2 Points do not need to be labelled for marking points to be awarded	2
10.	C	use of $P V=n R T \quad O R$ use of $\frac{P}{T}=$ constant \checkmark $T=« 5 \times 290=» 1450$ «K» \downarrow		2

(continued...)
(Question 10 continued)

Question		Answers	Notes $\mathbf{1 0 .}$ d area enclosed \checkmark work is done by the gas during expansion OR work is done on the gas during compression \checkmark the area under the expansion is greater than the area under the compression \checkmark		

Question			Answers	Notes	Total
11.	a	i	$\begin{aligned} & \text { density }=785 \text { « } \mathrm{kgm}^{-3} » \checkmark \\ & \text { « } \frac{4}{3} \pi(0.03)^{3} \times 785 \times 9.8=» 0.87 \text { «N» } \end{aligned}$	Accept answer in the range 784 to 786	2
11.	a	ii	$\begin{aligned} & \frac{0.87}{\frac{4}{3} \pi(0.03)^{3} \times 1080 \times 9.8} \\ & \text { OR } \\ & \frac{0.87}{1080 \times 1.13 \times 10^{-4}} \\ & \text { OR } \\ & \frac{785}{1080} \checkmark \\ & 0.727 \text { or } 73 \% \checkmark \end{aligned}$	Allow ECF from (a)(i)	2
11.	b		use of drag force to obtain $\frac{4}{3} \pi r^{3} \times 0.04 \times g=6 \times \pi \times 0.0011 \times r \times v \quad \checkmark$ $v=0.071<\mathrm{ms}^{-1} » \checkmark$		2

Option C - Imaging

Question			Answers	Notes	Total
13.	a	i	with object placed between lens and focus two rays correctly drawn \checkmark	Backwards extrapolation of refracted rays can be dashes or solid lines Do not penalize extrapolated rays which would meet beyond the edge of page Image need not be shown	2
13.	a	ii	«just less than» the focal length or $f \checkmark$		1
13.	b	i	$\frac{1}{10}+\frac{1}{v}=\frac{1}{2}$		2
			$v=2.5$ «m» \downarrow		
13.	b	ii	real, smaller, inverted \checkmark	All three required - OWTTE	1

(continued...)
(Question 13 continued)

Question			Answers	Notes	Total
13.	c	i	two correct rays coming from Q \checkmark	Allow any two of the three conventional rays.	
			locating \mathbf{Q}^{\prime} below the main axis $\boldsymbol{A N D}$ beyond f to the right of lens AND at intercept of rays \checkmark		2
13.	c	ii	$\frac{h}{h^{\prime}}=\frac{-x}{x^{\prime}}$ OR $2.5 \text { or } 10 \times 0.3 \text { « m» } \checkmark$		2
			«-» 0.075 «m» \checkmark		
13.	c	iii	towards Q \downarrow	Accept move to the left	1
13.	c	iv	spherical aberration \checkmark		
			top of the shape «R" is far from axis so no paraxial rays \checkmark	For MP2 accept rays far from the centre converge at different points	2

Question		Answers	Notes	Total
15.	a	realization that $\theta \mathrm{min}$ is the critical angle \checkmark		3
		$\theta=« \sin ^{-1} \frac{1.48}{1.5}=» 80.6 «^{\circ} » \checkmark$	Accept 1.4 rad Accept 0.16 rad	
		$\beta=« 90-80.6=» 9.4 «^{\circ} » \checkmark$		
15.	b	because the critical angle is nearly $90^{\circ} \checkmark$		
		then only rays that are «almost» parallel to the fibre pass down it \checkmark		3
		so pulse broadening is reduced \checkmark	OWTTE	

16.	a	evidence of finding the gradient \checkmark	2
		$\mu=$ « - gradient $=» 59.9$ « $\mathrm{cm}^{-1} » \checkmark$	
16.	b	$I=\frac{I_{0}}{25000} \checkmark$	2
		«ln25000 $=\mu x » x=0.17$ «cm» or 1.7 «mm» \checkmark	

Option D - Astrophysics

Question			Answers	Notes	Total
17.	a	i	«nuclear» fusion \checkmark	Do not accept "burning"	1
17.	a	ii	brightness depends on luminosity and distance/ $b=\frac{L}{4 \pi d^{2}}$ Vega is much further away but has a larger luminosity \checkmark	Accept answer in terms of Jupiter for MP2	2
17.	b	i	a group of stars forming a pattern on the sky AND not necessarily close in distance to each other	OWTTE	1
17.	b	ii	the star's position is observed at two times, six months apart, relative to distant stars parallax angle is half the angle of shift \checkmark 2 postions of Earth 6 months apart	Answers may be given in diagram form, so allow the marking points if clearly drawn	2

(continued...)
(Question 17 continued)

Question		Answers	Notes	Total	
17.	b	iii	1 $\frac{1}{0.13}=7.7 « \mathrm{pc} » \checkmark$ so $d=7.7 \times 3.26=25.1$ «ly» \checkmark		

18.	a	two stars orbiting a common centre «of mass» \checkmark	Do not accept "stars which orbit each other"	$\mathbf{1}$	
18.	b	« $\lambda \times T=2.9 \times 10^{-3} »$ $T=\frac{2.9 \times 10^{-3}}{115 \times 10^{-9}}=25217$ «K» \checkmark			
18.	c		use of the mass-luminosity relationship or $\left(\frac{M_{\text {Sirius }}}{M_{\text {Sun }}}\right)^{3.5}=1 \checkmark$ if Sirius B is on the main sequence then $\left(\frac{L_{\text {siriusB }}}{L_{\text {sun }}}\right)=1$ «which it is not» \checkmark	Allow reverse argument beginning with luminosity	2

(continued...)
(Question 18 continued)

Question			Answers	Notes	Total
18.	d	i	$\begin{aligned} & \left(\frac{L_{\text {sirusB }}}{L_{\text {Sun }}}\right)=0.025 \checkmark \\ & r_{\text {sirius }}=\text { « } \sqrt{0.025 \times\left(\frac{5800}{25000}\right)^{4}}=» 0.0085 r_{\text {sun }} \checkmark \end{aligned}$		2
18.	d	ii	white dwarf \checkmark		1
18.	e	i	Sirius A on the main sequence above and to the left of the Sun AND Sirius B on white dwarf area as shown \checkmark	Both positions must be labelled Allow the position anywhere within the limits shown.	1

(continued...)
(Question 18 continued)

| 19. | \mathbf{a} | galaxies are moving away
 OR
 space «between galaxies» is expanding \checkmark | Do not accept just red-shift |
| :--- | :--- | :--- | :--- | :--- |
| 19. | \mathbf{b} | « $\frac{\Delta \lambda}{\lambda}=» \frac{1.04}{115}=\frac{v}{c} \checkmark$
 $0.009 \mathrm{c} \checkmark$ | Accept 2.7×10^{6} «m $\mathrm{s}^{-1} »$
 Award $[0]$ if 116 is used for λ |

Question		Answers	Notes	Total
20.	a	interstellar gas/dust «from earlier supernova» \checkmark gravitational attraction between particles if the mass is greater than the Jean's mass $/ M_{j}$ the interstellar gas coalesces \checkmark as gas collapses temperature increases leading to nuclear fusion \checkmark	MP3 can be expressed in terms of potential and kinetic energy	4
20.	b	fluctuations in CMB due to differences in temperature/mass/density during the inflationary period/epoch/early universe leading to the formation of galaxies/stars/structures \checkmark gravitational interaction between galaxies can lead to collision \checkmark		3 max

(continued...)
(Question 20 continued)

Question		Answers	Notes	Total
20.		ALTERNATIVE 1 kinetic energy of galaxy $\frac{1}{2} m v^{2}=\frac{1}{2} m H^{2} r^{2}$ «uses Hubble's law» \checkmark potential energy $=\frac{G M m}{r}=G \frac{4}{3} \pi r^{3} \rho \frac{m}{r}$ «introduces density» \checkmark KE $=$ PE to get expression for critical $\rho \checkmark$ ALTERNATIVE 2 escape velocity of distant galaxy $v=\sqrt{\frac{2 G M}{r}} \checkmark$ where $H_{0} r=\sqrt{\frac{2 G M}{r}} \checkmark$ substitutes $M=\frac{4}{3} \pi r^{3} \rho$ to get result \checkmark		

